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Abstract

This article examines the temperature fields of the thick wall pipe while cooling it under the process of extrusion. We solved the Fou-
rier–Kirchhoff equation by Fourier method in the form of an infinite row and with the help of Bessel’s functions. The equations were
transformed into dimensionless forms and a solution of during heat we got as the function of Biot’s and Fourier’s number, dimensionless
inner radius and thermal capacitance ratio of contact phases.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The uses of plastic pipes in different fields of industry have
been on the rise. Also, they have been widely used in the
transportation of drinking water and sewage water, and in
the transportation of energy sources like gas and oil. Their
main advantage is their corrosion resistance and resistance
towards aggressive media. However, among definite disad-
vantages rank their lesser stiffness and limitation for lower
temperatures. In order to guarantee the sufficiently precise
geometry of pipes one must know their thermal profile
already at their production. Non-stationary temperature
fields cause [2–4] stress [1] already in the phase of production,
as well as residual stresses in the product itself. In this publi-
cation a solution of thermal fields will be offered at some sim-
plification of thermal process conditions.
2. Formulation of the problem

In the formulation of the problem we introduce the fol-
lowing simplifying conditions. At the beginning of coordi-
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ecsi@stuba.sk (L. Écsi).
nate system the processed extruded bar enters into the
calculation of an ideal cylindrical shape thick wall pipe of
outer radius R and inner radius R1, Fig. 1. The bar material
at the beginning is uniformly heated and it has an initial
temperature Ts0. Around the bar there is a cylindrical space
created by a perfectly isolated larger pipe, where the co-
current cooling (heating) medium enters with an initial
temperature Tf0 and it is in direct contact with the extruded
bar. The motion of the bar is steady and according to the
moving piston effect it predetermines the fluid/gas flow in
the space. Inside the solid phase we do not consider heat
sources. During the solution we assume the thermo-
mechanical material properties of the bar material and
the gas /cf, cs, kf, ks/ to be constant, that is independent
of the temperature. The coefficient of heat transfer between
the bar wall and the gas remains constant as well. The heat
due to radiation is included in the coefficient of heat trans-
fer a. The mass flow of the gas Mf and the bar material Ms

does not vary with time.
3. Mathematical description of the problem

Considering the aforementioned simplifications of
the Fourier–Kirchhoff equation of heat conduction in
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Nomenclature

a coefficient of temperature diffusivity [m2 s�1]
c specific heat [J kg�1 K�1]
C integration constant
E Young modulus [MPa]
G modulus of elasticity in shear [MPa]
J Bessel’s function first kind
Y Bessel’s function second kind
m thermal capacitance ratio of contact phases [–]
M mass flow [kg s�1]
R outer radius of cylinder [m]
R1 inner radius of cylinder [m]
t time [s]
T temperature [K]
a coefficient of heat transfer [Wm�2 K�1]

q dimensionless radial coordinate [–]
k heat conductivity [Wm�1 K�1]
H dimensionless temperature [–]

Subscripts

f fluid phase
s solid phase
0 initial value
p variable value on the out surface
c calorimetric
0 0-th order
1 1-th order
i inner

Fig. 1. Solid and liquid phase flux direction.
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cylindrical coordinate, it can be transformed into the fol-
lowing term:

oT
ot
¼ a

o2T
or2
þ 1

r
oT
or

� �
: ð1Þ

The initial and boundary conditions are the following: the
temperature of the bar as well as of the gas at the entry is
constant

t ¼ 0; T s ¼ T s0; T f ¼ T f0: ð2Þ

Under the assumption that the inner surface of the bar is
perfectly insulated, the following term is valid:

oT s

or

� �
r¼R1

¼ 0: ð3Þ

The condition of temperature exchange on the boundary of
both contact phases is described by this equation:

a½T f � ðT sÞr¼R� ¼ �ks

oT s

or

� �
r¼R

; ð4Þ
while the following term is valid: T sjr¼R ¼ T sp. If we intro-
duce average calorimetric temperature in the solid phase

T sc ¼
1

ð1� q2
1Þ

Z 1

q1

2
r
R

T s

dr
R
¼ 2

ð1� q2
1Þ

Z 1

q1

qT s dq; ð5Þ

then we can find the relation between the temperature of
the gas and the temperature in the solid phase in the fol-
lowing heat balance law

M scsðT sc � T s0Þ ¼ M fcfðT f0 � T fÞ: ð6Þ
4. Solving the problem

We introduce the following dimensionless variables:

Bi¼ aR
ks

Biot number;

Fo¼ at
R2 Fourier number

m¼ M scs

M f cf
thermal capacitance ratio of the contact phases

q¼ r
R dimensionless coordinate; q2 ðq1;1Þ;

Hs¼ T s�T s0

T f0�T s0
relative temperature difference of the solid phase;

Hsc¼ T sc�T s0

T f0�T s0
average calorimetric relative temperature difference

Hsp¼ T sc�T s0

T f0�T s0
surface relative temperature difference;

Hf ¼ T f�T s0

T f0�T s0
relative temperature difference of the fluid phase

ð7Þ

The conduction equation can be combined as follows:

oHs

oFo
¼ o2Hs

oq2
þ 1

q
oHs

oq
ð8Þ

and the Fourier heat conduction equation on the outside
surface

1� mHsc �Hsp ¼ �
1

Bi
oHs

oq

� �
q¼1

; ð9Þ

respectively, boundary conditions on the inner surface
(zero heat flow)
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oHs

oq

� �
q¼q1

¼ 0: ð10Þ

Initial conditions of the problem will be the following:

Fo ¼ 0; Hs ¼ Hsp ¼ 0; Hsc ¼ 0;

equation the condition of temperature exchange on the
boundary will have the following form:

Hf ¼ 1� mHsc; ð11Þ
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Fig. 2. Graphical representation of the transcendental equation.

Di ¼
2kið1� q2
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4mðV 1ðkiÞ � q1V 1ðkiq1ÞÞ

2 þ ð1� q2
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Fig. 3. Temperature distribution over the pipe wall.
and in the end the relative average calorimetric tempera-
ture difference in the solid phase

Hsc ¼
2

ð1� q2
1Þ

Z 1

q1

qHs dq: ð12Þ

Utilizing the Fourier method after substitutions, the
temperature field of the infinite thick wall pipe can be
found in terms of an infinite series as a function of dimen-
sionless time Fo, coordinate q, inner dimensionless radius
q1, temperature capacitance ratio m and Biot number Bi

Hs ¼
1

1þ m

�
X1
i¼1

Die
�k2

i Fo Y 1ðkiq1ÞJ 0ðkiqÞ � J 1ðkiq1ÞY 0ðkiqÞð Þ;

ð13Þ
or after launching the substitution

V 0ðkiqÞ ¼ Y 1ðkiq1ÞJ 0ðkiqÞ � J 1ðkiq1ÞY 0ðkiqÞ ð14Þ
V 1ðkiqÞ ¼ Y 1ðkiq1ÞJ 1ðkiqÞ � J 1ðkiq1ÞY 1ðkiqÞ ð15Þ

Hs ¼
1

1þ m
�
X1
i¼1

Die
�k2

i FoV 0ðkiqÞ: ð16Þ

From the Eq. (12) we can determine dimensionless medium
calorimetric temperature of the solid phase

Hsc ¼
1

1þ m
þ 2

ð1� q2
1Þ

�
X1
i¼1

Die
�k2

i Fo V 1ðkiÞ � q1V 1ðkiq1Þ
ki

� �
; ð17Þ

and from the Eq. (11) the temperature of the liquid phase

Hf ¼
1

1þ m
� 2m
ð1� q2

1Þ

�
X1
i¼1

Die
�k2

i Fo V 1ðkiÞ � q1V 1ðkiq1Þ
ki

� �
: ð18Þ

The values V1(ki) and V1(kiq1) in the Eqs. (17) and (18)
can be obtained from the Eqs. (14) and (15) by means of
substituting the coordinates of the surfaces.
The constants ki (which are dependent on the Biot num-
ber, dimensionless radius q1 and the thermal capacitance
ratio of contact phases) can be determined according to
the following transcendental equation

0 ¼ �k2
i V 1ðkiÞ þ

2mBi
ð1� q2

1Þ
V 1ðkiÞ þ BikiV 0ðkiÞ: ð19Þ

The constants Di we get from the boundary conditions
The shape of temperature surface in dependence on the
dimensionless time Fo and the radius q in the thick wall
pipe for subsequent values of the dimensionless quantities

m ¼ 1

Bi ¼ 2

q1 ¼ 0:5
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Fig. 4. Temperature distribution on the surfaces and mean radius
q = 0.75.
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is represented by means of software Mathematica in the
Fig. 2.

The shape of curve the dimensionless temperature on
the outer and inner surface (for previous conditions)
in the dependence the dimensionless time is represented
in the Fig. 3. Fig. 4 shows the dimensionless temperature
of surfaces corresponding to the inner radius, outer radius
and q = 0.75 versus Fourier number curve.
5. Closure

The presented paper solves the non-stationary tempera-
ture field of the infinite thick wall pipe at the co-current con-
tact with liquid medium. The derived analytical solution
shows us the dimensionless temperature dependence of the
pipe wall on the dimensionless coordinate q, the dimension-
less inner radius q1, Fourier number Fo, Biot number Bi and
temperature capacitance ratio of both phases m.
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